

TWT vs a Modern SSPA Architecture for Very High Power

Paulo Correa Chief Technical Officer Paulo.Correa@EmpowerRf.com

George Bollendorf Marketing and Business Dev Manager George.Bollendorf@EmpowerRF.com

Jon Jacocks Chief Executive Officer jjacocks@empowerrf.com

+1(310) 412-8100

Topics

- **Expertise Overview** >
- Evolution into the Modern Architecture >
- Modern Architecture High Level Description >
- Major System Elements >
 - The RF Drawer aka Booster
 - Digital Features in the Amplifier —
 - Combining Considerations —
- Scalability >
- Availability >
- **Effective MTBF** >
- Total Cost of Ownership >
 - With a model

>

Concluding Remarks and Q & A Session

CW, Pulse, and Long Duty Cycle Pulse High Efficiency and High MTTF's Scalable in Power - Liquid Cooled Models Hot Swapping - Liquid Cooled Models

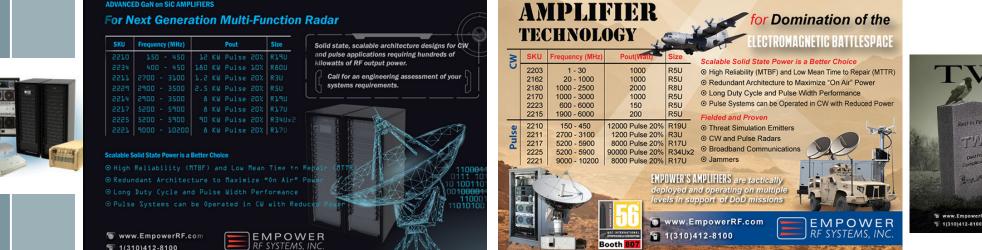
RF and Microwave Modules

- New 48V Modules Available!
- Analog or Digital Control
- Feature Rich

Expertise Overview

- > Pulse and CW SSPAs
- \rightarrow HF to X Band
- > EW

- > Radar
- > Product Testing
- > Communications
- > Modules
- > Air cooled Systems
- > Liquid Cooled Transmitters


Evolution – The Multi-mode and Interoperable Power Amplifier

Today's topic is the result of planned roadmap of technology implementation

ADVANCED GaN on SIC AMPLIFIERS

- The first generation of Solid State Multi-mode and Interoperable Power Amplifier is mature As seen in our Next Gen family of air cooled system amplifiers
 - *Multimode* Power Amplifier is an amplifier that can operate in all modes required for its application
 - *Interoperable* Power Amplifier is an amplifier that requires no change in hardware to operate in any mode
 - Why do we care? A single unit is capable of Multi-Domain applications. Designed to stay ahead of the increasing complexities of the signals environment.

Air Cooled Evolution

A Smart, User Configurable, Scalable Power Amplifier Architecture for Fielding More Advanced, Future Proof, Multi-Domain EW, Radar, Satcom, and Communications Systems.

150 MHz to 450 MHz, 12 KW Pulse 2.9 GHz to 3.5 GHz, <u>8 & 10 KW</u> Pulse 5.2 GHz to 5.9 GHz, 8 KW Pulse 9.2 GHz to 10 GHz, 8 KW Pulse

> scalable power "system of systems"

Threat Simulation Network Amplifiers - 2 MHz to 6 GHz coverage

17.5" x 21" x 22"

2 MHz - 3 GHz Switch Filters

2 - 6 GHz 25W PA + Switch Filter

Central Controller

1-3 GHz 250W PA

Power Supplies 2 – 30 MHz 250W PA 30 – 1000 MHz 250W PA

Power Supplies

2 – 30 MHz & 30 to 1000 MHz 25W PA's 1 – 3 GHz & 3 – 6 GHz 25W PA's Switch Filters

BEYOND GAN

BEYOND OPERATING CLASS

THE ARCHITECTURE MATTERS

Contemporary SSPA manufacturers have not taken advantages of the newest technology

≻High speed ADC & DACs

>RF silicon integrated into FPGA fabric

➤Fiber Optics

≻DSP

Advantages across multiple dimensions - Additional benefits vs traditional SSPA architecture

Reliability/Availability

Fidelity

Wave Form Flexibility

>Long Pulse Widths and Duty Cycles

Total Lifetime Cost of Ownership

Integration Features

>Web API for M2M

Scalability

Additional Operational Capabilities

>Precise Control with Short Latencies

➤Accurate Complex Waveform Power Management

>Broader Instantaneous Detection Bandwidth

≻Faster Frequency Hopping

>"On the Fly" Mode and Operational Profile changes

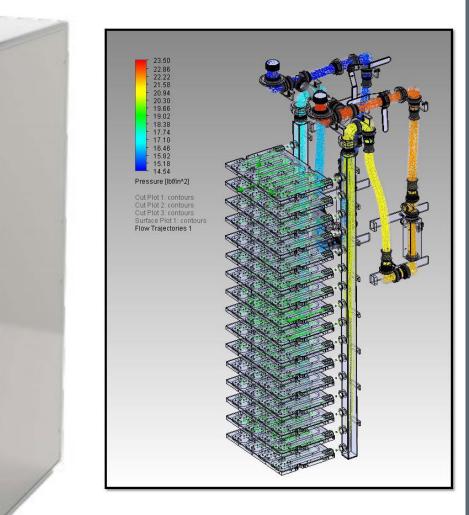
Evolution Commonality - "Platform-driven" Approach

Our recurring and consistent RF deck architecture, along with common power supplies, is used across all platforms.

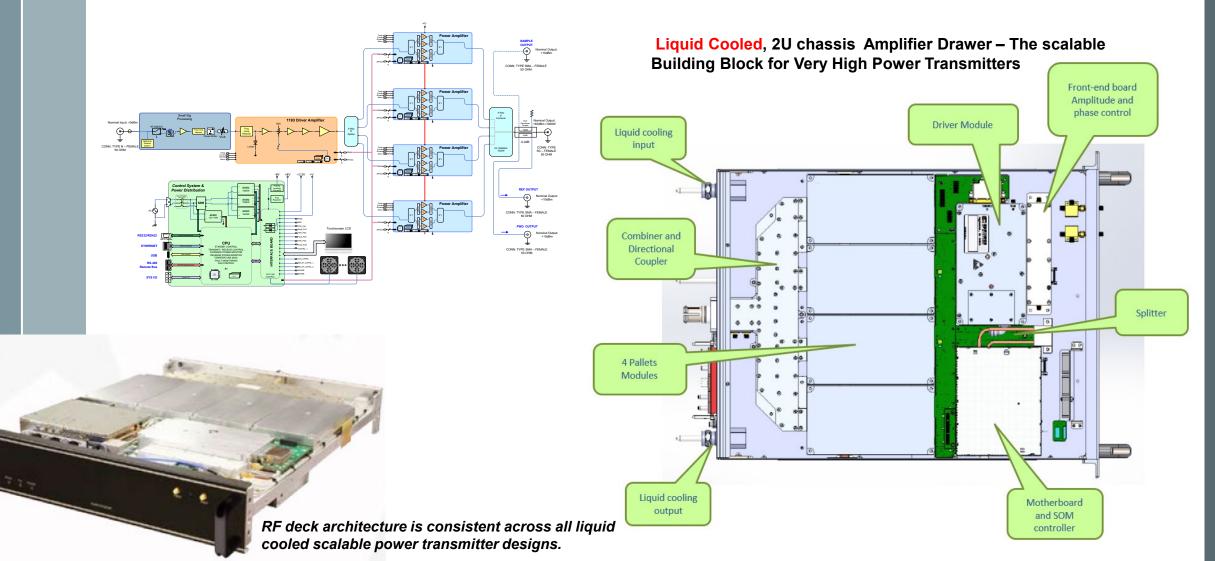
Important to understand the intentionality of evolution. The RF Deck for our new Scalable, Hot Swappable, Liquid Cooled architecture is unchanged.

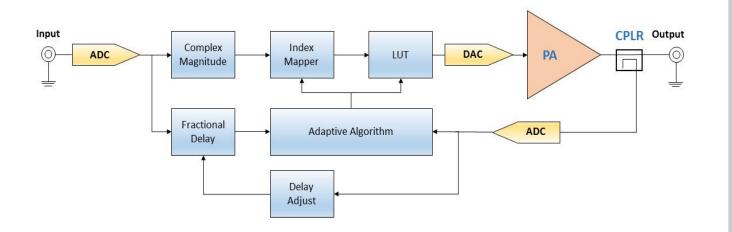
Liquid Cooled RF Deck

A Modern Architecture – High Level Description


Scalable, Liquid Cooled, Hot Swapping

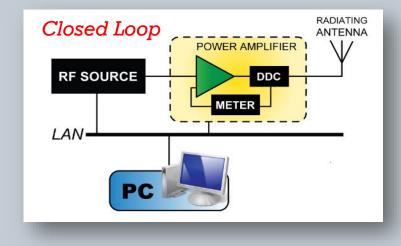
MAJOR SYSTEM ELEMENTS


- Fully integrated, liquid cooled SSPA amplifier building block
- System Controller
- Backplane Implementation, No External Cabling
- Waveguide Combiner
- Liquid Cooling Manifolds
- Optical Fiber Data Bus

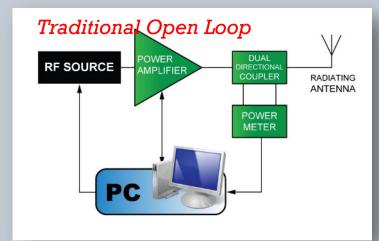


The RF Drawer - aka Booster

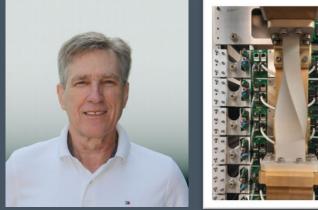
- > The basic building block is a fully integrated RF deck with power supply
- > Distributed RF and power supply design provides system redundancies and eliminates single points of failure



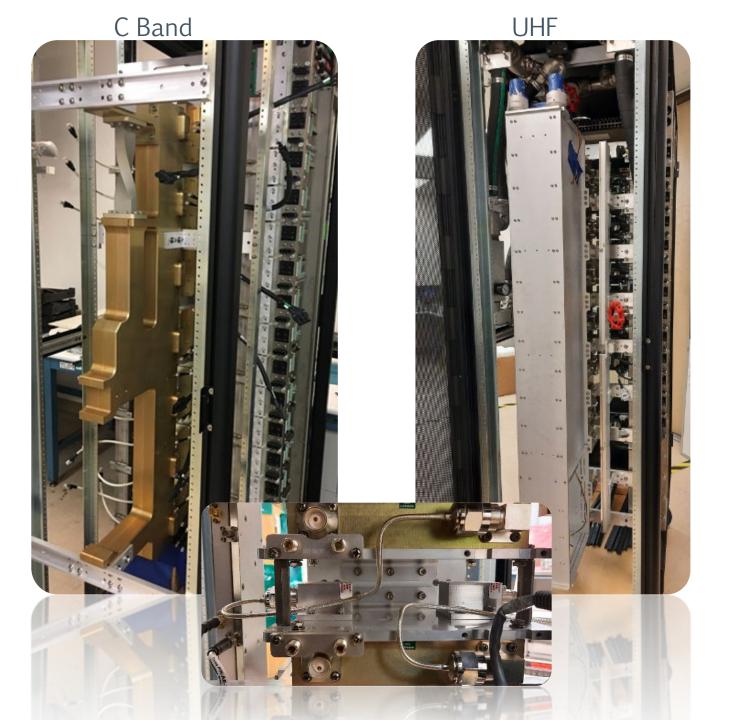
Digital Features in the Transmitter



A Step Towards Closed Loop Inside the System Amplifier, Where it Belongs


- Digital Detection What is it?
- Benefits of Digital Detection
- Fiber Optics High Speed Data

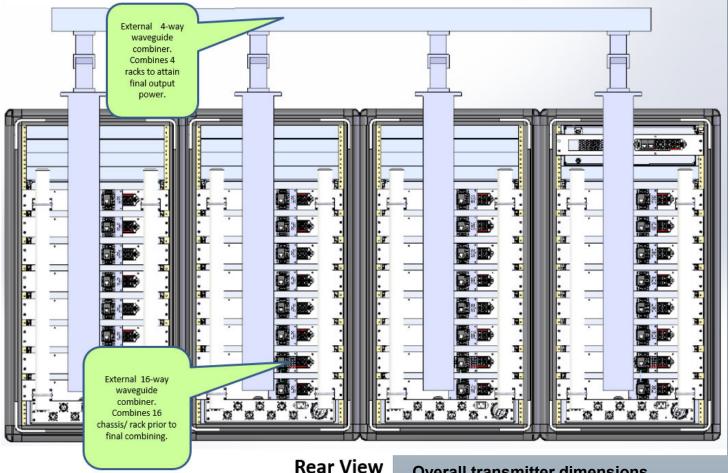



How the Typical System Amplifier has Been Integrated for Decades

Reducing Insertion Loss VSWR & Arcing Isolated Loads Adjustable Gain and Phase

SSPA's and System Controller

Multiple SSPA's to be combined into a higher power configuration


Two or more racks integrated into a single, higher power configuration - control chassis in Rack #1 managing all amplifiers.

1. Scalability at the Rack Level

- 2. 2U Drawer Level
- 3. Longer PW & Duty cycle

Example

2.9 to 3,5 GHz, 310 KW peak, 16% duty cycle PW 20 – 1000 µsec, Rise / Fall time 10nS

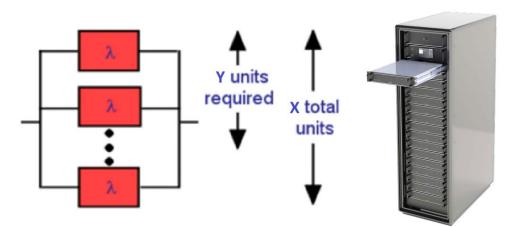
Overall transmitter dimensions 8' (wide) x 7' (high) x 4' (deep) additional clearance required for combiners liquid cooling system housed separately

Availability

Mission Critical on Air Availability •Reduced Points of Failure •Distributed Architecture with Isolated Loads •At the module Level, 2U Drawer level, and Rack Level •Hot Swapping

The Amplifier Remains on Air

At Reduced Output Component Failure, Drawer Failures, Cabinet Failure Exception is the Controller Failure. 15 minute MTTR


The Result: Traditional MTBF Definition Not Useful

	100KW Rack with 16 Drawers	
# of Drawer Failures	Maximum Power Available (W)	dB Loss Rated Power
1	93750	-0.280287236
2	87500	-0.57991947
3	81250	-0.901766303
4	75000	-1.249387366
5	68750	-1.627272975
6	62500	-2.041199827
7	56250	-2.498774732
8	50000	-3.010299957

Effective MTBF

Effective MTBF is based off effective failure rate of (X) parallel units which need (Y) operational for meeting application or mission success.

Subsystem	MTBF (note 1)	Failure Rate Per Million Hours (of booster)	MTTR	# Of Parallel Units	# That Can Fail	Effective Failure Rate of System Per Million Hours	Effective MTBF (note 2)
2U	20,400	49	0.5	16	0	784	1,275
Booster							
2U	20,400	49	0.5	16	1	.14	6,900,000
Booster							

(note 1) MTBF calculated with MIL-HDBK-217F, single 2U booster

(note 2) Exponential model

From the table it is obvious a type of redundancy is required for such a high power SSPA. But the surprising outcome is that with the proper architecture extremely high availability is intrinsic, literal redundancy is not required and therefore not an added cost. Only minimal fractional sparing is required.

Total Cost of Ownership (TCO)

Initial Amplifier Cost

•Typically higher for SSPA. Include cost of external hardware such as filters and isolators that may not be required for SSPA implementation. Some mission critical applications require redundant system with baseball switch.

Reliability MTBF

•TWT Failures within 2.5 years very common but varies with use case. Adjust with your use case data.

MTTR

- •Effects spare strategy and quantities
- Mission down time
- •Higher MTTR implies specialized Tech training

Maintenance Cost

- Includes rebuilds for cathode degradation
- ■~60% of tube cost

Major Repair

- New Tube 70% of new amp cost
- •How often? 1 to 5 years?

Annual Electrical Power Costs

Need efficiency data related to power at antenna

Equipment Spares

- •Use case showed 3X more spares required for TWT over SSPA for a non redundant SSPA
- •Modular, distributed SSPA architecture allow "fractional" sparing, changing the TCO dramatically.

Intangibles

- Availability
- SWaP in some cases
- Fidelity
- Technician Training
- Safety

Warning from two Major Tube Suppliers User Manuals

WARNING

HIGH VOLTAGE — VOLTAGES REQUIRED FOR OPERATION OF THIS DEVICE ARE EXTREMELY DANGEROUS TO LIFE; EQUIPMENT MUST BE DESIGNED WITH PROTECTIVE INTERLOCK CIRCUITS TO MAKE PHYSICAL CONTACT WITH THESE VOLTAGES IMPOSSIBLE. SEE "OPERATING HAZARDS" SECTION.

Lethal Voltages up to 15,000 Volts are present in this amplifier when it is operating. USE EXTREME CAUTION when inside the unit.

Total Cost of Ownership – Generic Case

TWT Cost		\$960,000			
SSPA Cost		\$1,600,000		3000000	
TWT rebuilds at 60% e	every 5 years	\$576,000			
TWT replacement 10 y	ears	\$960,000		2500000	
TWT Spare Cost		\$960,000		2300000	
SSPA Drawer Cost		\$100,000			
SSPA Controller Spare	Cost	\$60,000		2000000	SSPA
Nominal Energy Cost N	Nonthly	\$2,000			SSFA
SSPA Spare System 1 C	ontroller 2 Drawers	\$260,000		1500000	
TWT Spare System		\$960,000			
				1000000	TWT
				100000	
		Delta	\$582,667		
		Percentage	130.1%	500000	1 2
				\$3,500,000	
				\$3,000,000	
				33,000,000	
				\$2,500,000	
				\$2,000,000	
		Delte	1 202 667	+-))	
		Delta	1,282,667		
		Percentage	158.5%	\$1,500,000	
				\$1,000,000	
				+-,,3	
				\$500,000	1 2
					1 2
					-
				_	

E

Concluding Remarks and Q & A Session

- > Lower Total Cost of Ownership than Non Modular Architectures
- > Always "On Air" Architecture
- > Extreme Effective MTBF
- > Upgradable
- > Pulse Fidelity, Random Pulse Width and Duty Cycle, High PRF's
- Waveform Flexibility
- > Signal Processing Functions on the Roadmap
- > SWaP Better in Many Cases
- > Integration Features

> Plus a Long List of Intangible Benefits

More Questions? Send them to Sales@EmpowerRF.com