product resource whitepaper

Better Alternative for Measuring Linearity of GaN Amplifiers

APPLICATION NOTE: Methods to measure the true linearity of a power amplifier

GaN devices continue to be a key element in many radar, electronic warfare, satellite and terrestrial communication systems. GaN devices offer a number of advantages. For example, GaN devices have a high breakdown field due to a large bandgap that enables them to operate at higher voltages. Combining this with a high saturation velocity and corresponding large charge capability, GaN devices are ideal for high power applications. Adding excellent thermal conductivity, it is easy to see why the utilization of GaN devices continues to grow. In a recent study, Yole Développement expects the GaN industry to grow with a 23% CAGR between 2017 and 2023, driven by telecom and defense applications.
Some of the most popular GaN devices are wideband RF power amplifiers. Amplifiers are described by multiple characteristics including gain, frequency response or bandwidth, power output, linearity, efficiency, and noise figure. Two key characteristics that are often used to describe the quality of an amplifier are linearity and efficiency. The relative importance of the two attributes depends upon the application. For example, in a satellite-based application, efficiency may be more important as there is limited power available on a satellite. In terrestrial wireless communications, the relative importance may be more equal. Communication systems, such as those based on 5G standards, utilize wideband modulation schemes with significant linearity requirements. In addition, because of the amount of base stations needed to support the systems, it requires acute attention to power efficiency to manage operating expenses. Unfortunately, the power levels to maintain amplifier linearity are often well below the drive levels needed for maximum efficiency.

 

LINEARITY vs EFFICIENCY

This article will focus on the applications in which amplifier linearity is the critical attribute. In Figure 1, the blue line illustrates typical amplifier behavior. Linearity is measured by increasing the input power and observing the output power until the amplifier enters compression. Often amplifier linearity is specified at the input power level at which corresponding output power is 1 dB lower than the theoretical linear response, P1dB, which has been historically considered the point at which amplifiers operate most efficiently.

With the simultaneous need for linearity and efficiency, it is crucial to optimize the input back off (IBO) value. Too much back-off sacrifices efficiency and causes the amplifier to be oversized and costlier (to reach the required output power), while too little brings increasing compression and signal degradation. Therefore, measuring amplifier linearity accurately under realistic operating conditions is of considerable value to GaN engineers.

 

LINEARITY ASSESSMENT ALTERNATIVES

There are a number of alternatives for measuring and expressing amplifier linearity. Three common methods are: 1) characterization of amplifier intermodulation distortion (IMD), 2) noise power ratio (NPR) measurements, and 3) crest factor (CF), or peak-to-average power ratio (PAPR) measurements.ed with the LA-5 linearizing electronics. The meter is supplied with an extended range calibration to give a turndown of 100:1 over the flow range. It can be supplied with either meter-mounted or remote-mounted electronics. High temperature amplified pickoffs are used to eliminate noise generated by the floating (non-grounded) electrical system of the turbine generator. The FT Series turbine meter can be placed inside the generator room due to its compact size and durability under extreme conditions.With the simultaneous need for linearity and efficiency, it is crucial to optimize the input back off (IBO) value. Too much back-off sacrifices efficiency and causes the amplifier to be oversized and costlier (to reach the required output power), while too little brings increasing compression and signal degradation. Therefore, measuring amplifier linearity accurately under realistic operating conditions is of considerable value to GaN engineers

LINEARITY ASSESSMENT TOOL COMPARISON

The linearity of an amplifier was measured with all three approaches. Using a Noisecom noise source or a two-tone source, a signal was applied to the amplifier starting from -25 and increased in one dB steps until reaching -15 dBm. The results for each measurement are shown below. Reductions in gain, crest factor, NPR, and the delta between intermodulation products and the carrier signals all indicate an amplifier is behaving non-linearly.

Continue Reading White Paper here:

Contact your local VMA field engineer today if you need help or have any additional questions.

SEARCH OUR WEBSITE

Can’t find what you’re looking for?

Natalie Myers

Inside Sales Administration

Natalie Myers joined Vic Myers Associates in September 2021 and is excited to be part of the team. She received her bachelor’s in business administration from the University of Phoenix and prior to her position as Inside Sales Administration she worked in the Hospitality Industry for over 15 years as a Senior Sales Administrator. In her free time, she enjoys spending time with her husband, daughter, family and friends along with watching sporting events, traveling, hiking and cheering on her daughter in dance and basketball! Natalie is located in our Arizona office.

KAREN M. ROSS

People and Culture Specialist

Cell Phone: 505-720-9123
Email: karenr@vicmyers.com

Karen has been a part of Vic Myers Associates team since February 2023. Prior to her position as People and Culture Specialist, she worked in the Science & Technology field as an HR Manager & Project Lead for SAIC and LANL. In the short time with VMA she has learned a lot and looks forward to knowing our business even better in support of all of our employees. She values her church community, her two sons who happen to be engineers, volunteering, and golf. Karen is located in our Albuquerque, NM office.

FELECIA STIVERS

Field Sales Engineer

Felecia Stivers, a native of Rockford, IL, now excels as a Field Sales Engineer at VMA in our Arizona office. Holding a BSEE from Arizona State University, she draws from her extensive background at Medtronic, Orbital Sciences, General Dynamics, and Northrop Grumman.

Specializing in high-reliability applications, Felecia stands out for her proficiency in relationship-building and innovative problem-solving. Whether contributing to medical devices or playing a vital role in rocket launches, her work has had a tangible impact on saving lives and safeguarding the nation.

Beyond her professional pursuits, Felecia enjoys time with her two teenagers, finds joy in travel, and actively engages with her local church. Driven by a passion for helping customers navigate cutting-edge technology, she is committed to delivering dependable solutions in fast-changing environments.

TAYLOR GAUNTT

Field Sales Engineer

Taylor is a Texas native, and grew up in the small town of Boerne, Texas.  He attended Texas A&M University, where earned his bachelor’s degree in Engineering.  After college he was recruited by a Manufacturer’s Rep Firm, where he spent the first 7 years of his career. Initially hired on as an inside salesperson, Taylor quickly accelerated within the organization and expanded into various other roles such as Distribution Manager, and Field Sales Engineer.  Taylor then spent the following 7 years working for an electronic component distributor named Electro Enterprises that almost exclusively supported the mil/aero market.

Taylor worked as a Field Sales Engineer supporting the Texas, Utah and New Mexico territory, Product Manager, as well as Director or Business Development where he managed a team of 10 Field Sales Professionals across the entire United States.  Gathering from his previous experiences, Taylor has now taken on the role of Field Sales Engineer with Vic Myers supporting the Texas, Oklahoma, Louisiana, and Arkansas territory.  Outside of the office you will usually find Taylor either spending time with his wife and two young children, or out on the lake bass fishing.

TARIN SCHONCHECK

Sales Administration

Cell Phone: 480-345-6449
Email: tarins@vicmyers.com

Tarin was born and raised in Wisconsin, graduated from the University of Wisconsin-Stout and received a Bachelor of Science degree in Business Administration. Prior to Vic Myers she worked in the hospitality industry 20+ years as a Sales Analyst/Administrator.

In her spare time, Tarin enjoys spending time with her family, traveling to historical sites throughout the United States, reading, going to movies and concerts. On the weekends you will find Tarin at her nephews’ band concerts and baseball games. In addition, music and dance have been a part of her life with musical contrasting influences ranging from Prince to Olivia Newton-John.  Tarin is located in our Arizona office.

RICHARD MENDEZ

Sales Engineer

Richard was born and raised in Arizona. Attended Arizona State University with a focus in Mechanical Engineering and then fell into Technical Project Management. After 12 years of managing large budget projects spanning system integrations and upgrades, he transitioned into the role of Field Sales Engineer with VMA.

Richard has a deep passion for building relationships with his clients and principals, and supporting them to problem solve and develop innovative solutions. Outside of the office, Richard can be found volunteering as a mentor and coach of high school students at his church, running and hiking the extensive trails of Arizona, and spending time with his wife, 2 boys, 2 girls, and 2 grandkids. Richard is located in our Arizona office.